6 Brilliant Facts About LIGO and the Neutron Star Collision

Posted on

In February of 2016, scientists made the historic announcementthat they had observed the universe in an entirely new way with the first ever detection of gravitational waves—ripples in space produced by the catastrophic collision of two merging black holes.

What is LIGO?

Since then, the same telescope known as LIGO (short for Laser Interferometer Gravitational wave Observatory) has detected three additional black hole merger events which have confirmed major predictions from Einstein’s theory of general relativity. This detection was so important to our understanding of the universe that LIGO scientists Barry Barish, Kip Thorne, and Rainer Weiss earned the 2017 Nobel Prize in Physics earlier this month. astronomy, astronomy, astronomy

This week the scientists at LIGO, joined by astronomers from 70 other telescopes all around the world, are back again with big news. They have detected for the first time gravitational waves produced by the final collision of two neutron stars and observed the event across the electromagnetic spectrum kicking off the era of not just multi-wavelength but multi-messenger astronomy.

This news is so big that astronomers have been rumbling about it for months ever since the detection was made in August. It turns out, astronomers are terrible at keeping secrets. A few scientists leaked the information on Twitter, but, even more obvious was the fact that suddenly almost all of the world’s largest and most technologically advanced telescopes stared simultaneously at an otherwise normal-seeming galaxy about 130 million lightyears away. Many large observatories like Hubble, Green Bank, and Fermi post publicly where they are currently observing. There was so much off-the-record information flying around that the journal Naturepublished an article summarizing the rumors all the way back in August. astronomy, astronomy, astronomy

Here are six reasons astronomers are so excited about this new discovery and why you should be too.

1. The merger of two neutron stars has never before been observed.

On August 17th, 2017, the LIGO telescope detected a clear signal but one that was significantly longer—on the order of a minute—than the signals from merging black holes that last only a few seconds. LIGO scientists are constantly scanning their incoming signals and looking for matches in a library of hundreds of thousands of templates. In other words, the match-making software looks to see whether the detected signal matches what simulations predict we should observe for any of a variety of different kinds of merger events. Unlike all of LIGO’s previous detections which have all been signals from distant mergers of black holes, the August 17th signal the first ever detection of the final collision between two neutron stars with masses of 1.1 and 1.6 times the mass of our Sun at a distance of 130 million lightyears away off in the southern hemisphere. astronomy, astronomy, astronomy

Neutron stars are incredibly dense, dead stars produced by the supernova explosions that occur during stellar death. They are made up purely of neutrons and are three times denser than atomic nuclei. Neutron stars typically pack between one to two times the mass of our Sun into a space that’s 20-25 kilometers in diameter, or only about the length of Manhattan.

Models suggest the first neutron star was living a relatively quiet existence until the second neutron star arrived to form a binary system which then sent the pair careening throughout their host galaxy. As neutron stars orbit each other, general relativity predicts that the system will lose energy over time by radiating gravitational waves. This signal is exactly what LIGO detected.

The inevitable collision is then among the most violent and powerful events in the universe. But more on that later…

Prev1 of 3Next

Leave a Reply

Your email address will not be published. Required fields are marked *